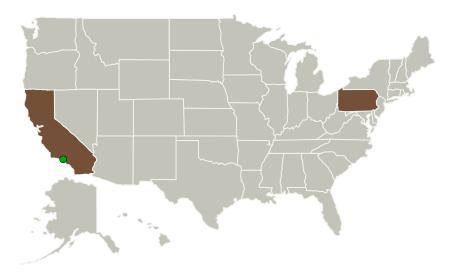
Wide-Field, Deep UV Raman Hyperspectral Imager, Phase I



Completed Technology Project (2014 - 2014)

Project Introduction

ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, proposes a revolutionary wide-field Raman hyperspectral imaging system capable of meeting the stated needs. The proposed innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery, to create a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution in a small form factor. The system can be configured both benchtop and standoff configurations. A standoff configuration is beneficial for any rover based mission, since it does not require close contact to the analyte of interest and Raman can interrogate targets up to 100 meters away.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
ChemImage Sensor	Lead	Industry	Pittsburgh,
Systems	Organization		Pennsylvania
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California

Wide-Field, Deep UV Raman Hyperspectral Imager, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Wide-Field, Deep UV Raman Hyperspectral Imager, Phase I

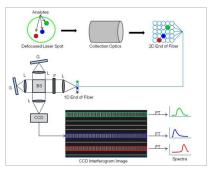
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations		
California	Pennsylvania	

Project Transitions

0

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137439)

Images

Briefing Chart

Wide-Field, Deep UV Raman Hyperspectral Imager, Phase I (https://techport.nasa.gov/imag e/131676)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ChemImage Sensor Systems

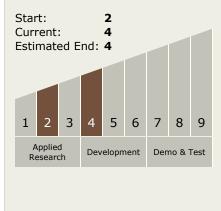
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Nathaniel R Gomer

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Wide-Field, Deep UV Raman Hyperspectral Imager, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

